Россия - Запад

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Россия - Запад » ТЕХНИКА и ТЕХНОЛОГИИ » ГЕННАЯ РЕВОЛЮЦИЯ.


ГЕННАЯ РЕВОЛЮЦИЯ.

Сообщений 1 страница 2 из 2

1

Project Syndicate, США

О пользе геномной революции
07.05.2016
Херардо Санчес (Gerardo Jimenez-Sanchez)

КЕМБРИДЖ (США) — Всего лишь 13 лет прошло после успешного завершения проекта «Геном человека», но уже очевидно, насколько активно геномика содействует развитию инноваций. Геномная революция пока ещё только начинается, но она уже стала агентом трансформации в мировой экономике, причём весьма многообещающим и способным принести огромную социальную и экологическую пользу.

В одних только Соединённых Штатах вложенные в проект «Геном человека» 3,8 миллиарда долларов бюджетных средств уже принесли экономическую выгоду на сумму около 1 триллиона долларов и создали более 300 тысяч рабочих мест. Согласно прогнозам ОЭСР, геномика станет центральным элементом во многих сферах человеческой деятельности и экономики, в частности, в здравоохранении, экологии, сельском хозяйстве, ветеринарии, биотехнологиях, альтернативной энергетике, судебной экспертизе, юстиции и безопасности. А так как темп инноваций продолжает ускоряться, этот прогноз сбудется, скорее всего, даже раньше, чем ожидается.

Сферой, где связанные с геномикой инновации привлекают наибольшее внимание, является медицина. Мы видим быстрый прогресс на пути к подлинно «персонализированной медицине»: благодаря профилям ДНК пациентов лечение становится более индивидуальным, предсказуемым, профилактическим.

Исследования по выявлению генов, которые связаны с наиболее распространёнными болезнями (в том числе болезнями, создающими значительную нагрузку на здравоохранение, экономику и общество, такими как рак, диабет, сердечно-сосудистые заболевания и ожирение), уже позволяют врачам использовать информацию о ДНК пациентов для определения способов клинического лечения. Учёные также ищут генетические вариации, которые влияют на действенность тех или иных лекарств, а это позволяет повысить безопасность и эффективность назначаемых препаратов, помогающих справляться с болью и лечить некоторые виды рака, сердечно-сосудистых и психиатрических заболеваний.

Шагом вперёд в этих исследованиях стал проект «Инициатива точной медицины», начатый в США в прошлом году. В его рамках проходит инновационное тестирование таргетированных лекарств от рака у взрослых и детей, вводится индивидуальный подбор методов лечения, оттачивается понимание проблем устойчивости к лекарствам. В долгосрочной перспективе этот проект предполагает создание исследовательской группы из миллиона с лишним волонтёров, чьи генетические данные, биологические образцы и информация об образе жизни сформируют фундамент, который позволит применять точную медицину для лечения многих заболеваний человека.

Однако здравоохранение далеко не единственная область, которая подвергается воздействию геномной революции. И в других сферах мы видим, как новые открытия радикально меняют ситуацию, причём многие из них обладают доказанным потенциалом для решения глобальных проблем, например, таких как обеспечение продовольственной безопасности и охрана окружающей среды в условиях быстрого роста численности мирового населения (по прогнозам, через 35 лет она достигнет 9,6 млрд человек).

Селекция ценных особенностей ДНК с помощью геномики даёт фермерам (и продовольственной отрасли в целом) инструменты для повышения количества и качества производимого продовольствия. К примеру, стало возможным повышение устойчивости к наводнениям посевов риса в Юго-Восточной Азии, а также увеличение производительности в свиноводстве, мясном и молочном скотоводстве. Быстрорастущий сектор аквакультуры и рыболовства получает выгоду от появления видов, обладающих большей продуктивностью, а также более устойчивых к болезням и стрессу.

Кроме того, геномика обеспечивает нас более подробной информацией о биоразнообразии и взаимодействии внутри экосистем, тем самым, содействуя разработке инновационных стратегий по защите окружающей среды.

Лучшим примером здесь являются леса. Благодаря расширению нашего понимания коммерчески ценных особенностей ДНК (устойчивость к насекомым, качество древесины, скорость роста, адаптация к изменениям климата) геномика улучшает качество управления лесами и повышает устойчивость лесонасаждений. Канадские и китайские учёные с помощью геномного анализа микробных сообществ, живущих в залежах углеводородов, разрабатывают новые биопроцессы, позволяющие повысить экологичность добычи нефти и газа за счёт увеличения эффективности использования ресурсов, сокращения расходов воды и энергии, минимизации выбросов парниковых газов.

Перспективы геномики выглядят безграничными. Но для того, чтобы они стали реальностью, необходимо преодолеть серьёзные препятствия. Например, в здравоохранении нам следует продолжить поиск убедительных доказательств выгоды от перехода к персонализированной медицине в повседневной практике. Необходим строгий экономический анализ, помогающий сформулировать политику в части оплаты и компенсации медицинских расходов. Но прежде всего, необходимо ответить на важные вопросы, которые связаны с конфиденциальностью истории пациентов, доступом к технологиям, порядком отчётности о случайных открытиях, дискриминацией, а также оказанием консультационных услуг. Это поможет властям выработать продуманные и дальновидные решения. В этой связи нам следует укреплять механизмы, обеспечивающие активное участие общества в данной дискуссии.

Уже на нынешней ранней стадии понятно, что геномика преобразит науку и технологии, вызвав волну очень значимых инноваций. Для стран и регионов мира наступило время заняться геномными исследованиями и технологиями, а также начать использовать их для эффективного решения основных глобальных, региональных и локальных проблем.


Оригинал публикации: Harnessing the Genomics Revolution
Опубликовано 05/05/2016
http://inosmi.ru/science/20160507/236451125.html

0

2

The Economist, Великобритания

Каков минимальный размер генома, необходимого для функционирования живого организма?

03.04.2016

Не каждый ученый, подобно Крейгу Вентеру (Craig Venter), может похвастаться тем, что его имя известно в широких научных кругах. В 1990-е годы доктор Вентер профинансировал параллельную версию проекта «Геном человека», применив более продвинутую технологию, по сравнению с той, что использовалась в международном проекте (последний в значительной степени позаимствовал подход Вентера). Ученый впервые создал синтетический вирус из общедоступных реактивов, а затем ему впервые в мире удалось синтезировать геном бактерии — модифицированную копию ДНК бактерии Mycoplasma mycoides.

Однако, осталась еще одна не решенная до сих пор задача — о минимальном геноме. Она формулируется так: каков минимальный геном бактерии, при котором она способна оставаться живой? Ответить на данный вопрос необходимо для того, чтобы разобраться с принципами функционирования бактерий и вопросами их эволюции. Это поможет заложить надежный фундамент для конструирования новых микроорганизмов, которые смогли бы приносить пользу всему человечеству, — в этом и заключается вклад синтетической биологии, которая сейчас бурно развивается. Вентер считает, что в этой области он добился успеха.

Свою методику он недавно опубликовал в журнале Science вместе Клайдом Хатчинсоном (коллегой по институту J. Craig Venter Institute (JCVI) в Сан-Диего, Калифорния; Хатчинсон возглавлял команду ученых, выполнявших эту научную работу); помимо него в исследовании принял участие еще 21 человек. Свою работу ученые начали с бактерии Mycoplasma mycoides, у которой имеется около 900 генов; кстати, Mycoplasma mycoides — это организм, обладающий самым маленьким геномом из всех живых существ. В начале 1990-х годов, работая с разными видами этой бактерии, Вентер решил использовать следующую методику: «выбивать» по одному гену из генома, а затем проверять, сможет ли бактерия выжить без этого выбитого гена. Ученые выявили 150 несущественных генов, однако это вовсе не означало, что без них бактерия смогла бы выжить. В некоторых случаях указанные гены друг друга дублировали. Однако если этот механизм дублирования убрать, выбив слишком большое количество генов, то бактерия погибнет. Возникает вопрос: какие из несущественных генов можно отбросить?

«Выбиваем» гены

На основе знаний, накопленных молекулярной биологией, в том числе и по результатам опытов с «выбиванием генов», ученые предположили, что можно в конечном итоге получить «гипотетический минимальный геном» (HMG), состоящий всего из 471 гена. Но оказалось, что здесь не все так просто. При использовании метода синтезирования по Вентеру, бактериальный геном разделяли на восемь частей; затем, каждую «восьмушку» собирали отдельно, а потом все восемь фрагментов сшивали. В ходе экспериментов по синтезированию генома бактерии M. mycoides путем сшивания восьми фрагментов выяснилось, что большая их часть вообще не функционировала, а остальные не могли функционировать без сбоев. В общем, пришлось все начинать сначала.

Сперва, ученые взяли бактерию с синтетическим геномом M. mycoides, а затем применили к ней методику под названием «разрушение генома с помощью транспозонов»: транспозон вставляли в случайное место (локус) генома; затем, полученный штамм поместили в чашку с агаровой средой — в результате, в ней появились 80 тысяч бактериальных колоний. Изучение этих колоний дало возможность выявить набор генов, необходимых для существования бактерии (бактерии не могли размножаться даже при малейшем повреждении необходимого гена транспозоном). Другая группа генов получила название «квази-необходимых»; эти гены могли выдерживать разрушение транспозоном лишь частично. Гены третьей группы, которые оказались сильно разрушенными, были признаны несущественными. В итоге, ученые взяли 240 необходимых генов, 229 квази-необходимых, и небольшое количество несущественных генов, которые, как подсказывал здравый смысл, тоже, наверное, для чего-то нужны. Из этого «замеса» ученые сконструировали жизнеспособный геном, который по своим размерам был меньше генома бактерии M. mycoides. После проверки фрагментов бактериального генома («восьмушек», о которых мы говорили выше) выяснилось, что семь из них функционировали прекрасно (правда, в работе последнего — восьмого — фрагмента наблюдались некоторые сбои); тем самым, восьмой фрагмент обозначил нестабильную область ДНК.

Но когда все восемь фрагментов генома были сшиты вместе, результат почему-то оказался неудовлетворительным. Однако, при комбинировании этих фрагментов в другом порядке (четыре «восьмушки» ДНК М. mycoides с четырьмя другими такими же фрагментами), колонии бактерий, как правило, выживали. Изучение комбинаций «восьмушек» позволило ученым выявить те пары генов, которые, действуя сообща, приводили к гибели всего штамма М. mycoides (причем, даже в том случае, когда в аналогичной ситуации выживала его дикая разновидность). С помощью разных методик ученым удалось постепенно уменьшить число генов, создав промежуточный вид, насчитывавший всего 512 генов. В другом опыте с использованием транспозонов было выявлено еще большее число несущественных генов, после удаления которых ученым удалось еще ближе подойти заветной цели — созданию HMG (в данном опыте был получен «минимальный геном», состоявший уже из 473 генов).

Заметим, что функции 149 из 473 генов по сей день неизвестны. Но ситуация прояснится после того, как будет получен минимальный геном, призванный заложить фундамент всей синтетической биологии. Ученым уже удалось приблизиться на один шаг к достижению этой цели: они смогли синтезировать участок ДНК, собрав разрозненные гены с одинаковыми функциями (репарации ДНК, формирования мембран, биосинтеза белка и т. д.) в кластеры. И в этом опыте клетка не погибла — по крайней мере, в лабораторных условиях.

Мировая научная общественность обязательно проявит интерес к синтетическому организму, созданному доктором Вентером. Скорее всего, это синтетическое живое существо не способно конкурировать с бактериями, живущими в естественных условиях, но, с точки зрения биотехнологии, данное его свойство может как раз оказаться преимуществом, поскольку непременно успокоит людей, опасающихся того дня, когда всякие модифицированные микроорганизмы вдруг вырвутся наружу сквозь двери лабораторий и посеют панику.

Принесет ли пользу — как с практической, так и с теоретической точки зрения — организм, обладающий минимальным геномом и синтезированный командой ученых под руководством доктора Вентера? Этого мы пока не знаем. Но один положительный результат уже налицо: в наше непростое время, когда фундаментальная наука, мягко говоря, не столь популярна, деятельность доктора Вентера по прежнему привлекает к себе повышенное внимание.

Оригинал публикации: "What is the smallest number of genes that a living organism can get away with?"Опубликовано 24/03/2016 18:08
http://inosmi.ru/science/20160403/235962438.html

0


Вы здесь » Россия - Запад » ТЕХНИКА и ТЕХНОЛОГИИ » ГЕННАЯ РЕВОЛЮЦИЯ.